An \mathcal{O}-acyclic variety of even index

joint with John Christian Ottem

Fumiaki Suzuki

June 10, 2021

Table of Contents

(1) Introduction
(2) Applications
(3) Construction
X : a smooth projective variety over \mathbb{C}
B : a smooth projective curve $X \rightarrow B$: a fibration

Graber-Harris-Starr: \exists section if X_{η} is rationally connected.
X : a smooth projective variety over \mathbb{C}
B : a smooth projective curve $X \rightarrow B$: a fibration

Graber-Harris-Starr: \exists section if X_{η} is rationally connected.

Question (Serre, 1958)

Does $X \rightarrow B$ admit a section if X_{η} is \mathcal{O}-acyclic, that is, $H^{i}\left(X_{\eta}, \mathcal{O}_{X_{\eta}}\right)=0$ for all $i>0$?

Graber-Harris-Mazur-Starr constructed a counterexample: \exists an Enriques surface fibration $X \rightarrow B$ without section.

Lafon, Starr: more explicit constructions

Question

Does $X \rightarrow B$ have index $I(X / B)=1$ if X_{η} is \mathcal{O}-acyclic?

$$
I(X / B)=\operatorname{gcd}\{\operatorname{deg}(M / B) \mid M \text { is a multi-section of } X \rightarrow B\}
$$

There is no local obstruciton: any $X \rightarrow B$ with $X_{\eta} \mathcal{O}$-acyclic has no multiple fiber $(\Leftrightarrow I(X / B)=1$ everywhere locally).

Esnault and Colliot-Thélène-Voisin expected a negative answer.

Theorem (Ottem-S.)

There exists an Enriques surface fibration $X \rightarrow \mathbb{P}^{1}$ of even index.

One can find $X \rightarrow \mathbb{P}^{1}$ as in the theorem defined over \mathbb{Q}.
The index question has a positive answer over $\overline{\mathbb{F}}_{p}$ if we further assume the Tate conjecture and $b_{2}(X)=\rho(X)$.

Table of Contents

(1) Introduction
(2) Applications
(3) Construction
I. Let $X \rightarrow \mathbb{P}^{1}$ be the Enriques surface fibration of the main theorem. Then $Y=X_{\eta}$ is an Enriques surface over $F=\mathbb{C}\left(\mathbb{P}^{1}\right)$.
Y does not admit a 0 -cycle of degree 1 , while $Y_{F_{p}}$ does for any $p \in \mathbb{P}^{1}$, where $F_{p} \cong \mathbb{C}((t))$ is the completion of F at p.
\Rightarrow The Hasse principle fails for 0 -cycles of degree 1 on Y.

Question (Colliot-Thélène)

Can the failure of the Hasse principle on Y be accounted for by the reciprocity obstruction?

No. In fact:

Theorem (Wittenberg)

For any smooth projective \mathcal{O}-acyclic variety Y over the function field $F=\mathbb{C}(B)$ of a complex curve B, there is no reciprocity obstruction.
II. For X smooth projective over \mathbb{C}, we have:

$$
\begin{aligned}
& H_{\mathrm{alg}}^{2 p}(X, \mathbb{Z}):=\operatorname{Im}\left(\mathrm{cl}^{p}: C H^{p}(X) \rightarrow H^{2 p}(X, \mathbb{Z})\right) \\
\subseteq & \operatorname{Hdg}^{2 p}(X, \mathbb{Z}):=H^{2 p}(X, \mathbb{Z}) \cap H^{p, p}(X)
\end{aligned}
$$

Integral Hodge Conjecture (IHC): $H_{\mathrm{alg}}^{2 p}(X, \mathbb{Z})=\operatorname{Hdg}^{2 p}(X, \mathbb{Z})$.
IHC holds for $p=0, \operatorname{dim} X$ (trivial), $p=1$.
There are counterexamples for $2 \leq p \leq \operatorname{dim} X-1$:
Atiyah-Hirzebruch, Kollár, ...

Theorem (Colliot-Thélène-Voisin)

If $f: X \rightarrow B$ is a fibration with $X_{\eta} \mathcal{O}$-acyclic, then

$$
f_{*}: H_{2}(X, \mathbb{Z})=H d g_{2}(X, \mathbb{Z}) \rightarrow H_{2}(B, \mathbb{Z})=\mathbb{Z}
$$

Hence $\exists \beta \in H d g_{2}(X, \mathbb{Z}) \mapsto 1 \in H_{2}(B, \mathbb{Z})$.

Corollary

If $X \rightarrow \mathbb{P}^{1}$ is the Enriques surface fibration of the main theorem, then

$$
H_{\mathrm{alg}}^{4}(X, \mathbb{Z}) / \text { tors } \subsetneq H d g^{4}(X, \mathbb{Z}) / \text { tors . }
$$

β is not algebraic; 4β is algebraic on our example.
III. Consider the Abel-Jacobi map for smooth projective V :

$$
A J^{p}: C H_{\mathrm{hom}}^{p}(V) \rightarrow J^{2 p-1}(V)=J\left(H^{2 p-1}(V, \mathbb{Z})\right)
$$

Restrict $A J^{p}$ to $C H_{\mathrm{alg}}^{p}(V)$:

$$
\psi^{p}: C H_{\mathrm{alg}}^{p}(V) \rightarrow J_{a}^{2 p-1}(V):=A J^{p}\left(C H_{\mathrm{alg}}^{p}(V)\right)
$$

Then $J_{a}^{2 p-1}(V)$ is an abelian variety and ψ^{p} is regular: for any smooth projective S with $s_{0} \in S$ and any $\Gamma \in C H^{p}(S \times V)$,

$$
S \rightarrow C H_{\mathrm{alg}}^{p}(V) \xrightarrow{\psi^{p}} J_{a}^{2 p-1}(V), s \mapsto \psi^{p}\left(\Gamma_{s}-\Gamma_{s_{0}}\right)
$$

is a morphism of algebraic varieties (Griffiths, Lieberman).

Question (Murre, 1985)

Is ψ^{p} universal among all regular homomorphisms?

Yes for $p=1, \operatorname{dim} V$ by the theory of Pic and Alb. Yes for $p=2$ as proved by Murre using the Merkurjev-Suslin theorem.

Walker: the Abel-Jacobi map ψ^{p} factors as

where

- ψ_{W}^{p} is a surjective regular homomorphism;
- $J_{W}^{2 p-1}(V)=J\left(N^{p-1} H^{2 p-1}(V, \mathbb{Z})\right)$;
- π^{p} is a natural isogeny of abelian varieties.

Therefore

$$
\psi^{p} \text { is universal } \Rightarrow \operatorname{Ker}\left(\pi^{p}\right)=0
$$

or equivalently, the sublattice

$$
N^{p-1} H^{2 p-1}(V, \mathbb{Z}) / \text { tors } \subset H^{2 p-1}(V, \mathbb{Z}) / \text { tors }
$$

is saturated.

Theorem (S.)

Let X be smooth projective such that
(1) $H_{\text {alg }}^{4}(X, \mathbb{Z}) /$ tors $\subsetneq H d g^{4}(X, \mathbb{Z}) /$ tors;
(2) $\mathrm{CH}_{0}(X)$ is supported on a surface.

Then there exists an elliptic curve E such that the sublattice

$$
N^{2} H^{5}(X \times E, \mathbb{Z}) / \text { tors } \subset H^{5}(X \times E, \mathbb{Z}) / \text { tors }
$$

is NOT saturated. Consequently, the Abel-Jacobi map

$$
\psi^{3}: C H_{\mathrm{alg}}^{3}(X \times E) \rightarrow J_{a}^{5}(X \times E)
$$

is NOT unviersal.
The theorem can be applied to X of the main theorem.
In fact, $\mathrm{CH}_{0}(X)=\mathbb{Z}$.
This settles Murre's question.

Table of Contents

(1) Introduction
(2) Applications
(3) Construction

Let $S=(1)^{3} \subset \mathbb{P}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(\mathcal{O}(2,0) \oplus \mathcal{O}(0,2))$.

Lemma

If S is general, S is an Enriques surface.

Proof:

$$
\begin{array}{rlll}
\mathbb{P}_{A}=\mathbb{P}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(\mathcal{O}(2,0) \oplus \mathcal{O}(0,2)) & \supseteq & E_{1}, E_{2} \\
\mathbb{P}_{B}=\mathbb{P}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(\mathcal{O}(1,0) \oplus \mathcal{O}(0,1)) & \supseteq & F_{1}, F_{2} \\
\mathbb{P}^{5}=\mathbb{P}\left(H^{0}(\mathcal{O}(1,0) \oplus \mathcal{O}(0,1))\right) & \supseteq & P_{1}, P_{2}
\end{array}
$$

It is enough to observe that $(2)^{3} \subset \mathbb{P}^{5}$ is a K 3 surface.
Q.E.D.

Let $X=(2,1)^{3} \subset \mathbb{P}^{1} \times \mathbb{P}_{A}$.
(Convention: $\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}_{A}}(a, b)=p r_{1}^{*} \mathcal{O}_{\mathbb{P}^{1}}(a) \otimes p r_{2}^{*} \mathcal{O}_{\mathbb{P}_{A}}(b)$).
If X is general, then $p r_{1}: X \rightarrow \mathbb{P}^{1}$ is an Enriques surface fibration.

Lemma

(1) $\kappa(X)=1$.
(2) X is simply connected and $H^{i}(X, \mathbb{Z})$ are torsion-free for all i.
(3) Hodge diamond

(1) $\mathrm{CH}_{0}(X)=\mathbb{Z}$ (as expected by the Bloch conjecture).

Proof that $\mathrm{CH}_{0}(X)=\mathbb{Z}$:

Let $C \subset X$ be a complete intersection curve.

Bloch-Kas-Lieberman: $\mathrm{CH}_{0}(S)=\mathbb{Z}$ for any Enriques surfaces S.
$\Rightarrow C H_{0}(X)$ is supported on C.
$\Rightarrow C H_{0}(X)_{\operatorname{deg}=0} \cong \operatorname{Alb}(X)=0$.
Q.E.D.

Proof that $\mathrm{CH}_{0}(X)=\mathbb{Z}$:

Let $C \subset X$ be a complete intersection curve.

Bloch-Kas-Lieberman: $\mathrm{CH}_{0}(S)=\mathbb{Z}$ for any Enriques surfaces S.
$\Rightarrow C H_{0}(X)$ is supported on C.
$\Rightarrow C H_{0}(X)_{\operatorname{deg}=0} \cong \operatorname{Alb}(X)=0$.

> Q.E.D.

Proof that $\mathrm{CH}_{0}(X)=\mathbb{Z}$:

Let $C \subset X$ be a complete intersection curve.

Bloch-Kas-Lieberman: $\mathrm{CH}_{0}(S)=\mathbb{Z}$ for any Enriques surfaces S.
$\Rightarrow C H_{0}(X)$ is supported on C.
$\Rightarrow C H_{0}(X)_{\operatorname{deg}=0} \cong \operatorname{Alb}(X)=0$.

> Q.E.D.

Proof that $\mathrm{CH}_{0}(X)=\mathbb{Z}$:

Let $C \subset X$ be a complete intersection curve.

Bloch-Kas-Lieberman: $\mathrm{CH}_{0}(S)=\mathbb{Z}$ for any Enriques surfaces S.
$\Rightarrow C H_{0}(X)$ is supported on C.
$\Rightarrow C H_{0}(X)_{\operatorname{deg}=0} \cong \operatorname{Alb}(X)=0$.

> Q.E.D.

Geometry of X :

$(i=1,2, j=1, \cdots, 24)$
The 24 planes $X \cap\left(\mathbb{P}^{1} \times E_{1}\right)=E_{1,1} \cup \cdots \cup E_{1,24}$ will be important.

Theorem

If X is very general, any multi-section of $p r_{1}: X \rightarrow \mathbb{P}^{1}$ has even degree over \mathbb{P}^{1}.

Proof:

We aim to show a key congruence: for any multi-section M and for any 12 -tuple $1 \leq j_{1}<\cdots<j_{12} \leq 24$, we have

$$
\begin{equation*}
\operatorname{deg}\left(M / \mathbb{P}^{1}\right) \equiv \sum_{k=1}^{12} M \cdot E_{1, j_{k}} \quad \bmod 2 \tag{1}
\end{equation*}
$$

$(1) \Rightarrow$ Theorem: $M \cdot E_{1,1} \equiv \cdots \equiv M \cdot E_{1,24}$, so $\operatorname{deg}\left(M / \mathbb{P}^{1}\right)$ is even.

The proof is a combination of monodromy and specialization arguments.

Step 1: A monodromy argument reduces the theorem to showing the congruence (1) for a single 12 -tuple $1 \leq j_{1}<\cdots<j_{12} \leq 24$.

Step 2: A specialization argument. Use specializations twice.

Step 1:

Let $\mathcal{X} \rightarrow U$ be the universal family of X.
There is a natural action of $\pi_{1}(U)$ on the set of 24 planes $E_{1,1}, \cdots, E_{1,24}$ by permutations.

Lemma

The monorodomy representation $\rho: \pi_{1}(U) \rightarrow S_{24}$ is surjectve.
Assume that the congruence (1) holds for a 12-tuple $1 \leq j_{1}<\cdots<j_{12} \leq 24$. If $\sigma \in S_{24}$ and $g \in \pi_{1}(U)$ is a lift of σ,

$$
\operatorname{deg}\left(M / \mathbb{P}^{1}\right) \equiv \operatorname{deg}\left(g^{*}(M) / \mathbb{P}^{1}\right) \equiv \sum_{k=1}^{12} M \cdot E_{1, \sigma^{-1}\left(j_{k}\right)} \quad \bmod 2
$$

for any multi-section M of $p r_{1}: X \rightarrow \mathbb{P}^{1}$.

Step 2:

Let $Y=(1,1)^{3} \subset \mathbb{P}^{1} \times \mathbb{P}_{A}$.
If Y is general, then $p r_{1}: Y \rightarrow \mathbb{P}^{1}$ is an Enriques surface fibration.

Lemma

(1) $\kappa(Y)=1$.
(2) Y is simply connected and $H^{i}(Y, \mathbb{Z})$ are torsion-free for all i.
(3) Hodge diamond

(9) $\mathrm{CH}_{0}(Y)=\mathbb{Z}$ (as expected by the Bloch conjecture).

Geometry of Y :

$(i=1,2, j=1, \cdots, 12)$.
The 12 planes $Y \cap\left(\mathbb{P}^{1} \times E_{1}\right)=E_{1,1}^{\prime} \cup \cdots \cup E_{1,12}^{\prime}$ will be important.

First specialization:
Specialize $X=(2,1)^{3}$ to the union of $Y=(1,1)^{3}$ and $R_{1}, R_{2}, R_{3}=(1,0) \cap(0,1)^{2}$ in $\mathbb{P}^{1} \times \mathbb{P}_{A}$.

Under the chosen specialization,
$\left\{E_{1, j}\right\}_{j=1}^{24} \mapsto\left\{E_{1, j}^{\prime}\right\}_{j=1}^{12} \cup\left\{E_{1}^{(1)}, \cdots, E_{4}^{(1)}\right\} \cup \cdots \cup\left\{E_{1}^{(3)}, \cdots, E_{4}^{(3)}\right\}$.
This determines a 12 -tuple $1 \leq j_{1}<\cdots<j_{12} \leq 24$ such that
$E_{1, j_{1}}, \cdots, E_{1, j_{12}}$ specialize to $E_{1,1}^{\prime}, \cdots, E_{1,12}^{\prime}$.

We wanted to show: for any multi-section M of $p r_{1}: X \rightarrow \mathbb{P}^{1}$, we have

$$
\operatorname{deg}\left(M / \mathbb{P}^{1}\right) \equiv \sum_{k=1}^{12} M \cdot E_{1, j_{k}} \quad \bmod 2
$$

Enough to show: for any multi-section M of $p r_{1}: Y \rightarrow \mathbb{P}^{1}$, we have

$$
\operatorname{deg}\left(M / \mathbb{P}^{1}\right) \equiv \sum_{j=1}^{12} M \cdot E_{1, j}^{\prime} \quad \bmod 2
$$

Second specialization:

Specialize Y to a union $Y_{0} \cup Y_{0}^{\prime}$ such that $F-\sum_{j=1}^{12} E_{1, j}^{\prime}$ is double on each component (but not on the union).

Q.E.D.

Thank you for the attention!

