An \mathcal{O} -acyclic variety of even index

joint with John Christian Ottem

Fumiaki Suzuki

June 10, 2021

Fumiaki Suzuki An O-acyclic variety of even index

▲ 同 ▶ → 三 ▶

Table of Contents

2 Applications

Fumiaki Suzuki An O-acyclic variety of even index

æ

▲ 同 ▶ → 三 ▶

- X : a smooth projective variety over $\mathbb C$ B : a smooth projective curve
- $X \rightarrow B$: a fibration

Graber-Harris-Starr: \exists section if X_{η} is rationally connected.

- X : a smooth projective variety over $\mathbb C$
- B: a smooth projective curve
- $X \rightarrow B$: a fibration

Graber-Harris-Starr: \exists section if X_{η} is rationally connected.

Question (Serre, 1958)

Does $X \to B$ admit a section if X_{η} is \mathcal{O} -acyclic, that is, $H^{i}(X_{\eta}, \mathcal{O}_{X_{\eta}}) = 0$ for all i > 0?

Graber-Harris-Mazur-Starr constructed a **counterexample**: \exists an Enriques surface fibration $X \rightarrow B$ without section.

Lafon, Starr: more explicit constructions

Question

Does $X \to B$ have index I(X/B) = 1 if X_{η} is O-acyclic?

 $I(X/B) = gcd \{ deg(M/B) \mid M \text{ is a multi-section of } X \to B \}$

There is no local obstruction: any $X \to B$ with X_{η} \mathcal{O} -acyclic has no multiple fiber ($\Leftrightarrow I(X/B) = 1$ everywhere locally).

Esnault and Colliot-Thélène–Voisin expected a negative answer.

(ロ) (同) (三) (三) (二)

Theorem (Ottem-S.)

There exists an Enriques surface fibration $X \to \mathbb{P}^1$ of even index.

One can find $X \to \mathbb{P}^1$ as in the theorem defined over \mathbb{Q} .

The index question has a positive answer over $\overline{\mathbb{F}}_p$ if we further assume the Tate conjecture and $b_2(X) = \rho(X)$.

イロト イポト イラト イラト

Table of Contents

Fumiaki Suzuki An O-acyclic variety of even index

æ

э

→ < ∃ →</p>

I. Let $X \to \mathbb{P}^1$ be the Enriques surface fibration of the main theorem. Then $Y = X_\eta$ is an Enriques surface over $F = \mathbb{C}(\mathbb{P}^1)$.

Y does not admit a 0-cycle of degree 1, while Y_{F_p} does for any $p \in \mathbb{P}^1$, where $F_p \cong \mathbb{C}((t))$ is the completion of F at p.

 \Rightarrow The Hasse principle fails for 0-cycles of degree 1 on Y.

Question (Colliot-Thélène)

Can the failure of the Hasse principle on Y be accounted for by the reciprocity obstruction?

No. In fact:

Theorem (Wittenberg)

For any smooth projective \mathcal{O} -acyclic variety Y over the function field $F = \mathbb{C}(B)$ of a complex curve B, there is no reciprocity obstruction.

イロト イヨト イヨト

II. For X smooth projective over \mathbb{C} , we have:

$$H^{2p}_{alg}(X,\mathbb{Z}) := \operatorname{Im} \left(\operatorname{cl}^p \colon CH^p(X) \to H^{2p}(X,\mathbb{Z})
ight)$$

 $\subseteq Hdg^{2p}(X,\mathbb{Z}) := H^{2p}(X,\mathbb{Z}) \cap H^{p,p}(X).$

Integral Hodge Conjecture (IHC): $H^{2p}_{alg}(X,\mathbb{Z}) = Hdg^{2p}(X,\mathbb{Z}).$

IHC holds for p = 0, dim X (trivial), p = 1.

There are counterexamples for $2 \le p \le \dim X - 1$: Atiyah-Hirzebruch, Kollár, · · ·

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Colliot-Thélène–Voisin)

If $f: X \to B$ is a fibration with X_{η} O-acyclic, then

$$f_* \colon H_2(X,\mathbb{Z}) = Hdg_2(X,\mathbb{Z}) \twoheadrightarrow H_2(B,\mathbb{Z}) = \mathbb{Z}.$$

Hence $\exists \beta \in Hdg_2(X, \mathbb{Z}) \mapsto 1 \in H_2(B, \mathbb{Z}).$

Corollary

If $X \to \mathbb{P}^1$ is the Enriques surface fibration of the main theorem, then

$$H^4_{\mathsf{alg}}(X,\mathbb{Z})/\operatorname{tors} \subsetneq Hdg^4(X,\mathbb{Z})/\operatorname{tors}.$$

 β is not algebraic; 4 β is algebraic on our example.

イロト イポト イヨト イヨト

III. Consider the Abel-Jacobi map for smooth projective V:

$$AJ^p \colon \mathit{CH}^p_{\mathsf{hom}}(V) o J^{2p-1}(V) = J(H^{2p-1}(V,\mathbb{Z})).$$

Restrict AJ^p to $CH^p_{alg}(V)$:

$$\psi^{p} \colon CH^{p}_{alg}(V) \to J^{2p-1}_{a}(V) := AJ^{p}(CH^{p}_{alg}(V)).$$

Then $J_a^{2p-1}(V)$ is an abelian variety and ψ^p is regular: for any smooth projective S with $s_0 \in S$ and any $\Gamma \in CH^p(S \times V)$,

$$\mathcal{S} o \mathcal{CH}^p_{\mathsf{alg}}(\mathcal{V}) \xrightarrow{\psi^p} J^{2p-1}_{\mathsf{a}}(\mathcal{V}), \, s \mapsto \psi^p(\Gamma_s - \Gamma_{s_0})$$

is a morphism of algebraic varieties (Griffiths, Lieberman).

Question (Murre, 1985)

Is ψ^p universal among all regular homomorphisms?

Yes for p = 1, dim V by the theory of Pic and Alb. Yes for p = 2 as proved by Murre using the Merkurjev-Suslin theorem.

→ < ∃ →</p>

Walker: the Abel-Jacobi map ψ^{p} factors as

where

• $\psi^{\rm P}_W$ is a surjective regular homomorphism;

•
$$J_W^{2p-1}(V) = J(N^{p-1}H^{2p-1}(V,\mathbb{Z}));$$

• π^p is a natural isogeny of abelian varieties.

Therefore

$$\psi^{p}$$
 is universal $\Rightarrow \operatorname{Ker}(\pi^{p}) = 0$,

or equivalently, the sublattice

$$\mathit{N}^{p-1}\mathit{H}^{2p-1}(V,\mathbb{Z})/\operatorname{tors}\subset \mathit{H}^{2p-1}(V,\mathbb{Z})/\operatorname{tors}$$

is saturated.

Theorem (S.)

Let X be smooth projective such that

$$\ \, {\it I}{\it H}^{4}_{\sf alg}(X,\mathbb{Z})/\operatorname{tors} \subsetneq {\it Hdg}^{4}(X,\mathbb{Z})/\operatorname{tors};$$

2 $CH_0(X)$ is supported on a surface.

Then there exists an elliptic curve E such that the sublattice

$$\mathit{N}^{2}\mathit{H}^{5}(\mathit{X} imes \mathit{E},\mathbb{Z})/\operatorname{tors}\subset \mathit{H}^{5}(\mathit{X} imes \mathit{E},\mathbb{Z})/\operatorname{tors}$$

is NOT saturated. Consequently, the Abel-Jacobi map

$$\psi^3 \colon CH^3_{\mathrm{alg}}(X \times E) \to J^5_a(X \times E)$$

is **NOT** unviersal.

The theorem can be applied to X of the main theorem. In fact, $CH_0(X) = \mathbb{Z}$. This settles Murre's question.

Table of Contents

2 Applications

Fumiaki Suzuki An O-acyclic variety of even index

æ

э

▶ < ∃ ▶

Let
$$S = (1)^3 \subset \mathbb{P}_{\mathbb{P}^2 \times \mathbb{P}^2}(\mathcal{O}(2,0) \oplus \mathcal{O}(0,2)).$$

Lemma

If S is general, S is an Enriques surface.

æ

< ロ > < 同 > < 三 > < 三 >

Introduction Applications Construction

Proof:

$$\begin{split} \mathbb{P}_{A} &= \mathbb{P}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(\mathcal{O}(2,0) \oplus \mathcal{O}(0,2)) &\supseteq E_{1}, E_{2} \\ \mathbb{P}_{B} &= \mathbb{P}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(\mathcal{O}(1,0) \oplus \mathcal{O}(0,1)) &\supseteq F_{1}, F_{2} \\ \mathbb{P}^{5} &= \mathbb{P}(H^{0}(\mathcal{O}(1,0) \oplus \mathcal{O}(0,1))) &\supseteq P_{1}, P_{2}. \end{split}$$

It is enough to observe that $(2)^3 \subset \mathbb{P}^5$ is a K3 surface.

Fumiaki Suzuki An *O*-acyclic variety of even index

Let $X = (2,1)^3 \subset \mathbb{P}^1 \times \mathbb{P}_A$. (Convention: $\mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}_A}(a,b) = pr_1^* \mathcal{O}_{\mathbb{P}^1}(a) \otimes pr_2^* \mathcal{O}_{\mathbb{P}_A}(b)$).

If X is general, then $pr_1 \colon X \to \mathbb{P}^1$ is an Enriques surface fibration.

Lemma

- $\bullet \kappa(X) = 1.$
- **2** X is simply connected and $H^i(X,\mathbb{Z})$ are torsion-free for all *i*.
- Index of the second second

• $CH_0(X) = \mathbb{Z}$ (as expected by the Bloch conjecture).

Proof that
$$CH_0(X) = \mathbb{Z}$$
:

Let $C \subset X$ be a complete intersection curve.

Bloch-Kas-Lieberman: $CH_0(S) = \mathbb{Z}$ for any Enriques surfaces S. $\Rightarrow CH_0(X)$ is supported on C. $\Rightarrow CH_0(X)_{deg=0} \cong Alb(X) = 0.$

Proof that
$$CH_0(X) = \mathbb{Z}$$
:

Let $C \subset X$ be a complete intersection curve.

Bloch-Kas-Lieberman: $CH_0(S) = \mathbb{Z}$ for any Enriques surfaces S. $\Rightarrow CH_0(X)$ is supported on C. $\Rightarrow CH_0(X)_{deg=0} \cong Alb(X) = 0.$

Proof that
$$CH_0(X) = \mathbb{Z}$$
:

Let $C \subset X$ be a complete intersection curve.

Bloch-Kas-Lieberman: $CH_0(S) = \mathbb{Z}$ for any Enriques surfaces S. $\Rightarrow CH_0(X)$ is supported on C. $\Rightarrow CH_0(X)_{deg=0} \cong Alb(X) = 0.$

Proof that
$$CH_0(X) = \mathbb{Z}$$
:

Let $C \subset X$ be a complete intersection curve.

Bloch-Kas-Lieberman: $CH_0(S) = \mathbb{Z}$ for any Enriques surfaces S. $\Rightarrow CH_0(X)$ is supported on C. $\Rightarrow CH_0(X)_{deg=0} \cong Alb(X) = 0.$

Geometry of X:

 $(i = 1, 2, j = 1, \cdots, 24)$ The 24 planes $X \cap (\mathbb{P}^1 \times E_1) = E_{1,1} \cup \cdots \cup E_{1,24}$ will be important.

Theorem

If X is very general, any multi-section of $pr_1 \colon X \to \mathbb{P}^1$ has even degree over \mathbb{P}^1 .

Proof:

We aim to show a **key congruence**: for any multi-section M and for any 12-tuple $1 \le j_1 < \cdots < j_{12} \le 24$, we have

$$\deg(M/\mathbb{P}^1) \equiv \sum_{k=1}^{12} M \cdot E_{1,j_k} \mod 2. \tag{1}$$

(1) \Rightarrow Theorem: $M \cdot E_{1,1} \equiv \cdots \equiv M \cdot E_{1,24}$, so deg (M/\mathbb{P}^1) is even.

The proof is a combination of monodromy and specialization arguments.

Step 1: A monodromy argument reduces the theorem to showing the congruence (1) for a **single** 12-tuple $1 \le j_1 < \cdots < j_{12} \le 24$.

Step 2: A specialization argument. Use specializations twice.

< ロ > < 同 > < 三 > < 三 >

Step 1:

Let $\mathcal{X} \to U$ be the universal family of X.

There is a natural action of $\pi_1(U)$ on the set of 24 planes $E_{1,1}, \cdots, E_{1,24}$ by permutations.

Lemma

The monorodomy representation $\rho \colon \pi_1(U) \to S_{24}$ is surjectve.

Assume that the congruence (1) holds for a 12-tuple $1 \leq j_1 < \cdots < j_{12} \leq 24$. If $\sigma \in S_{24}$ and $g \in \pi_1(U)$ is a lift of σ ,

$$\deg(M/\mathbb{P}^1) \equiv \deg(g^*(M)/\mathbb{P}^1) \equiv \sum_{k=1}^{12} M \cdot E_{1,\sigma^{-1}(j_k)} \mod 2$$

for any multi-section M of $pr_1 \colon X \to \mathbb{P}^1$.

Step 2:

Let $Y = (1,1)^3 \subset \mathbb{P}^1 \times \mathbb{P}_A$.

If Y is general, then $pr_1 \colon Y \to \mathbb{P}^1$ is an Enriques surface fibration.

Lemma

 $\bullet \kappa(Y) = 1.$

- **2** Y is simply connected and $H^i(Y,\mathbb{Z})$ are torsion-free for all i.
- Output State And State

• $CH_0(Y) = \mathbb{Z}$ (as expected by the Bloch conjecture).

< ロ > < 同 > < 三 > < 三 >

Geometry of Y:

 $(i = 1, 2, j = 1, \cdots, 12).$ The 12 planes $Y \cap (\mathbb{P}^1 \times E_1) = E'_{1,1} \cup \cdots \cup E'_{1,12}$ will be important.

First specialization:

Specialize $X = (2,1)^3$ to the union of $Y = (1,1)^3$ and $R_1, R_2, R_3 = (1,0) \cap (0,1)^2$ in $\mathbb{P}^1 \times \mathbb{P}_A$.

Under the chosen specialization,

$$\{E_{1,j}\}_{j=1}^{24} \mapsto \{E_{1,j}'\}_{j=1}^{12} \cup \{E_1^{(1)}, \cdots, E_4^{(1)}\} \cup \cdots \cup \{E_1^{(3)}, \cdots, E_4^{(3)}\}.$$

This determines a 12-tuple $1 \le j_1 < \cdots < j_{12} \le 24$ such that $E_{1,j_1}, \cdots, E_{1,j_{12}}$ specialize to $E'_{1,1}, \cdots, E'_{1,12}$.

We wanted to show: for any multi-section M of $pr_1 \colon X \to \mathbb{P}^1$, we have

$$\deg(M/\mathbb{P}^1)\equiv\sum_{k=1}^{12}M\cdot E_{1,j_k}\mod 2.$$

Enough to show: for any multi-section M of $pr_1 \colon Y \to \mathbb{P}^1$, we have

$$\deg(M/\mathbb{P}^1) \equiv \sum_{j=1}^{12} M \cdot E'_{1,j} \mod 2.$$

Second specialization:

Specialize Y to a union $Y_0 \cup Y'_0$ such that $F - \sum_{j=1}^{12} E'_{1,j}$ is double on each component (but not on the union).

Q.E.D.

Thank you for the attention!

Fumiaki Suzuki An O-acyclic variety of even index

æ